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The overlapping plate  method, first introduced  in the early 1960s by Henrich Eichhorn, 
was originally intended to provide better  star catalogs  through improved data reduction 
techniques. Every star, not just  the reference stars,  contributes to  the solution, and a 
group of overlapping exposures is processed in a simultaneous  reduction.  This  method 
has become standard for star catalog developers, but only recently has  it been applied 
to asteroid  astrometry.  Practical techniques for using the overlapping plate  method  are 
presented so that asteroid astrometrists can  produce improved results. 

Introduction 

Classical reduction techniques in narrow-field astrometry (see, e.g. ,  Konig 1962) treat each exposure 
separately.  One  locates images of a set of reference stars, whose celestial coordinates are already 
known, and uses the measured  coordinates of the images to determine the  “plate  constants” or set 
of parameters describing the ideal gnomonic projection and corrections to  it.  The plate  constants 
can  then  be used to deduce the celestial coordinates of any other image in  the field. 

The classical approach works well provided that  there is an  adequate  number of reference stars, 
well distributed  around  the  target  object,  and that  the  target lies fairly close to  the center of the 
field. The  latter condition minimizes the effect of unmodeled or incorrectly modeled distortions 
on the derived position of the  target (Eichhorn & Williams 1963). Since each field is reduced 
independently, a star whose image appears in several different fields taken  on  the  same night will 
have a set of measured  positions, all different, and one  then  calculates the weighted mean of these 
positions. 

The “overlapping plate  method” was introduced by Eichhorn (1960) specifically to handle cases 
where a star  appeared on  more than one photographic  plate.  This  method relies on  two principles: 

A star  can have only  one  position  at a time. One can solve directly for each star’s 
position in a simultaneous  solution,  obtaining an answer that is better  than any  obtained  from 
just one field. 

One  should  use all available  data. Whenever a star  appears more than once, there is a 
natural  constraint on the relative  pointing of the fields. In effect one synthesizes a larger field 
of  view from all the exposures used in the reduction. 

There  are two  advantages to this  method.  First, by moving the field around one can observe more 
reference stars.  This can allow the observer to use a highly accurate  but relatively sparse  catalog 
like Tycho-2 instead of a denser but less accurate one. Second, those field stars which are observed 
more than once contribute to  the  plate  constants for each field in which they  appear.  It  thus 
becomes much easier to solve for distortions,  magnitude  terms,  and  other  departures  from  the  ideal 
projection.  Both  these effects make the solution  more  robust. 

Note that a star  that  appears only once does not influence the  plate  constants.  Rather,  the  solution 
for its position will drive its residual to zero, reproducing the results of the classical solution for 
the  appropriate values of the  plate  constants for that field. This  characteristic implies that, for 
asteroid work, one must treat each observation of the  target asteroid  as if it were a separate  object. 
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The overlapping plate  method  has been used for several years at JPL’s Table  Mountain  Observatory 
(Owen et al. 1998), with excellent results (Dunham 2000). It is presented  here  in the hope that 
software developers will consider including it  in future releases of their  astrometry packages. 

Setup 

Before one can use the overlapping plate  method, one first needs an  observation file containing  not 
just  the measured  centroids but also catalogued positions of the reference stars  and  approximate 
positions of the field stars  and of the  targets  at each observation.  This file is obtained  as follows: 

1. Obtain  centroids for every usable image in each picture. 

2. Identify the reference stars  and  target(s) in the usual way. 

3. Perform a classical astrometric solution on each field in turn. A  six-constant  solution  may 
suffice. 

4. Examine each centroid and write its  data  to  the observation file: 

- If it is a reference star, identify it  as such. Copy its coordinates and  their  uncertainties 
from the reference catalog. 

- If it is a target, identify it  as such, and assign the observation a unique identifier (perhaps 
a concatenation of the asteroid  number and  the field number) so that each target image 
is treated independently of the  others. Copy the  astrometric,  topocentric position  from 
the  target’s ephemeris, or alternatively  calculate ( a ,  6) from the  plate  constants.  In  either 
approach assign the position a “very large” (effectively infinite)  uncertainty. 

- If it is a field star, calculate its (a,6) and compare to  the  other field stars found thus  far. 
Identify it with a previous observation if there is a match, or add  it  to  the catalog if there 
is no  match. Again use a very large  uncertainty. 

5 .  After the  last image  has been processed and identified, sort  the observation file  by “object,” 
with all observations of each object placed together: reference stars  first,  then field stars,  then 
the  targets. An “object” in this  context is a reference star, a field star, or one  observation of 
a target. 

The observation file contains one record for each observed image. Each record contains, at  a 
minimum, the observed image  location ( x ,  y); the number of the field on which the image  appeared; 
the  type of image (reference star, field star, or target);  an ID number  unique to each “object”; the 
uncertainties uz and uy in the image  centroid, and  the uncertainties urn and 0 6  in the celestial 
coordinates. One can add  other  items  as necessary, for instance  the observed magnitude in order 
to add a coma term to  the plate  constants. 

Note that this  setup procedure need be  executed but once. One  can  perform various solutions  with 
different sets of solution  parameters  without having to recreate  the observation file. 

Note also that this  procedure implicitly treats any new discoveries as  though  they were field stars. 
If the new asteroid is moving slowly enough that  the matching  algorithm  can  identify it  as  the 
same  object  on successive exposures, the solution will report  one average position, and  it will have 
huge residuals in each exposure. Conversely, if its motion between exposures exceeds the software’s 
matching  tolerance, it will be given a different ID at each appearance. It is a good idea to write 
the observation file as plain text so that one can fix this  sort of problem manually. 
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The solution 

The solution  parameters include the right ascension ai and declination Si for the  ith object of the N 
objects,  as well as  the  plate  constants for all the fields. It is a good idea to solve for changes to these 
quantities: use the  plate  constants determined above to  map (ai, Si) into computed values (zc, yc) ,  
and  subtract these  from the observed (z, y) to form the prefit residuals. Thus  the  parameter set 
really looks like (Aa1, AS,, . . . , A ~ N ,  ASN, AAl,  A&, . . .). Of course, one  may solve for Aa; cos Si 

instead of Aai. 

The problem as it  stands is singular: one can move the ensemble of fields (retaining  their  relative 
orientation)  on  the sky, simultaneously changing the coordinates of all the  objects to compensate, 
and  the observations will be unchanged. The singularity is removed by placing constraints  on  the 
positions of the reference stars. These  constraints  are  nothing  more than  the catalogued  uncertain- 
ties in the reference stars’ positions, at  the epoch of observation, and  they  amount to additional 
equations of condition of the form ai - aicstalog = 0 f uai .  

This  parameter  set is very large, since it contains 2N parameters for the  objects alone, as well as  the 
plate  constants for all the exposures.  Computers nowadays can  handle a least-squares  adjustment 
with  many  thousands of parameters. Nevertheless, since each of the  equations of condition includes 
terms for only one object,  it is possible to use Kalman filtering and  smoothing techniques (e.g., 
Bierman 1977) to shrink the size of the solution set. One replaces the first 2N parameters  with 
two, a generic Aa (or Aa cos 6) and a generic AS. All the  plate  constants follow in the  list.  Data 
processing then proceeds in two  steps: “filtering,” in which the observations are presented and 
a final answer obtained;  and  “smoothing,” in which the final answer for the  plate  constants is 
propagated back through  the  data  to  update  the earlier partial results for the  objects’ coordinates. 

Filtering 

The filtering process is merely a mechanism for introducing  the equations of condition sequentially 
into a least-squares adjustment. 

1. Set up a covariance matrix whose ( 1 , l )  element is utl ,  whose (2,2) element is whose other 
diagonal elements are very large, and whose off-diagonal elements are zero. In  other words, 
by supplying  an a priori variance for a1 and 61 one automatically  incorporates  the  additional 
equations of condition described above. The  other  parameters  are initially  unconstrained and 
uncorrelated. 

2. Process the equations of condition for each object in turn. Each  image provides two such 
equations, one in x and one in y. The  left-hand side of each  equation  contains  terms in ai, 
S i ,  and  the  plate  constants for the field in  question. The  right-hand side is the prefit residual 
(observed minus computed value). 

3. Each  time a new object is encountered in the observation file: 

a. Save the  current  (interim) solution  vector Aqr to a scratch file. 

b.  Calculate the first row  of the inverse of the covariance matrix,  and divide this row by its 
first element. Save this  vector to  the scratch file. 

c.  Zero out  the first row and first column of the covariance matrix,  and set the ( 1 , l )  element 
equal to  the variance in right ascension for the next star, o & + ~ ) .  

d.  Calculate the second row  of the inverse of the  (new) covariance matrix. Save this  vector 
too. 
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e. Zero out  the second row and column of the covariance matrix,  and set the (2,2) element 
equal to  the variance in declination for the next star, 

The solution Aq,v after all N objects have been processed is the  same as would be  obtained  in  one 
huge least-squares adjustment. (Since it is the final answer rather  than  partial results, the asterisk 
is suppressed  in the notation.) Likewise, the covariance is the  same  as  the  appropriate  submatrix of 
the huge adjustment.  The saved solution for each object  (except for the  last), however, is  not the 
correct estimate;  rather, it is  what  the correct estimate would be if there were no  more  observations 
to process. In  order to obtain  the correct estimate, one must work backwards through  the  data, 
in effect picking up each interim  solution  as it existed at  the time  and  accounting for the effects of 
the subsequent  observations. 

Smoothing 

The  smoothing process (Rauch,  Tung, & Streibel 1965; Bierman 1983) is the mechanism by  which 
later observations are used to  correct the  interim solutions saved during filtering. For the  ith  object, 
there  are  no  further  equations of condition involving ai and 6; after  the  last observation of that 
object  has been processed. Subsequent observations  continue to adjust  the  plate  constants,  and 
changes in the plate  constants  induce  compensating changes to (a;,&) through  their correlations 
as they  were after the observations for object i were  completed. This is the reason the first  two rows 
of the inverse of the covariance were saved. 

Start  at  the end of the  scratch file that was written  during  filtering,  and proceed backwards through 
that file. The  steps  that follow assume that object i has been processed. (Initially i = N . )  

1. Compute  the postfit residuals for all observations of object i using the final (smoothed)  solution 
A%. 

2. Read  in the previous three records: the interim  solution Aqii-l) and  the two rows of the 

3. Take the reciprocal of element 2 of the second (6) row; this  is  the variance ,z2 in  declination 

inverse of the  interim covariance. 

for object i - 1 for the correction we are  about to make. 

4. Multiply the second row  by the above variance. The resulting  vector, which has zero in its 
first element and  unity  in  its second element,  is the  partial derivative vector a6(,-1)/aq. This 
vector is also known as  the  “smoother gains.” 

5. Perform a linear  correction to obtained  the smoothed  correction  in declination for  object i - 1: 

The second term is a product of a row vector (the  partials)  and a column vector (the correc- 
tions) and  thus produces a scalar  result. The  left-hand side becomes element 2 of Aq(i-l). 

6. Optionally  smooth the covariance by first treating  the above partial derivatives and variance 
as if they  constituted  an  equation of condition and  then adding cZ2 to  the (2,2) element of the 
covariance. This  step provides the smoothed position sigmas for each object;  it is  independent 
of the  smoothing process for Aq. 

7. Repeat steps 3-6 for right ascension (the first row). -Then go back to step 1 for the postfit 
residuals for object i - 1. 

4 



Factorization methods 

It is worth  noting that  the classical Kalman filter is numerically unstable.  Updates to  the diagonal 
elements of the covariance are performed by a process which  involves subtraction.  When one datum 
provides an overwhelming decrease in the variance for a parameter,  that  subtraction can involve 
two nearly equal  numbers,  with  resulting loss of precision. It is even possible for round-off and 
truncation  errors  to accumulate to  the point where a diagonal element goes  negative-and since 
the diagonal  elements are  the variances (02) of the  parameters, these elements must never be 
negative. One can  imagine that havoc that ensues if this  happens. 

A  far  better way is to employ either  the  square  root of the covariance or the  square  root of the 
inverse of the covariance. Both  forms have been used at  JPL;  the  astrometry reduction  software 
happens to use the former.  Bierman (1977) has developed numerically stable  methods for both 
filtering and  smoothing,  and  the  interested  reader is referred to his monograph for details. The 
stability arises because the diagonal elements are  updated not by subtraction  but by multiplication 
by a ratio of positive numbers; the resulting o2 can never be negative. 
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